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ABSTRACT. This short note is concerned with a measure version criterion for hypersur-
faces to be minimal. Certain natural flows and associated reflections for many mini-
mal hypercones, including minimal isoparametric hypercones and area-minimizing
hypercones, are studied.

1. INTRODUCTION

Various reflection principles play an important role in the research on minimal sub-
manifolds, for instance, each connected part of the fixed point set of an isometry being
totally geodesic, the construction of minimal hypersurfaces [8, 5] and etc. The paper
[6] started the study of weakly reflective submanifolds (which have to be austere). Re-
cently, [1] emphasized on the hypersurface case.

Definition 1.1 ([1]). Let X n+1 be a complete Riemannian manifold and N n an embed-
ded hypersurface. Assume N divides X into two domains D1 and D2. Suppose that at
any point p of N there is an isometry F of X such that

F (p) = p, F (N ) = N , F (D1) = D2, F (D2) = D1.

Then N is called helicoidal in X .

It follows

Theorem 1.2 ([6, 1]). Every helicoidal hypersurface is minimal.

As an application, all Simons cones Ck,k =C
(
Sk

( 1p
2

)×Sk
( 1p

2

))
can be proved mini-

mal. Note that Sk
( 1p

2

)×Sk
( 1p

2

)
is helicoidal in S2k+1(1). However, Clifford tori of gen-

eral type, namely,

Tk,l = Sk
(√

k
k+l

)
×Sl

(√
l

k+l

)
⊂ Sk+l+1 when k 6= l , or other minimal surfaces are not in

general. Therefore, it is natural to detect situations for N =C (Tk,l ) in Rn+1.

We shall derive a measure version criterion for a hypersurface N to be minimal in
§2. The formulations of our results take advantage of auxiliary foliation structures.
Although interesting local versions can be gained, we wish to have “global" visions.

Given a flow with respect to suitable variable t along some foliation F = {
Fp : p ∈ N

}
perpendicular to N = {

t = 0
}
, if the (leafwise) associated reflection F along the foliation

with respect to t by (p, t ) 7→ (p,−t ) in Fp satisfies:

(1). F preserves the volume formΩX of X and fixes N , and
1
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(2). F sends the unit normal Vp of N at p to its antipodal,

then F is called a perpendicular associated variable reflection (PAVR) of F to N .
However the PAVR structure alone is not sufficient for N to be minimal. It turns out
that we need to consider the following quantity.

Definition 1.3. Assume W (p, t ) is the velocity vector field of Fp in t . Then acceleration
at p is defined to be

(1.1) I(p) = d‖W (p, t )‖
d t

∣∣∣
t=0

.

Remark 1.4. One can define I±(·) if W is C 1 merely in either side of N .

Our criterion is

Theorem 1.5. For a PAVR of N , I(·) vanishes identically in N if and only if N is minimal.

Local PAVR structures always exist for minimal isoparametric hypercones. In §3 we
shall establish “global" version.

Theorem 1.6. For every isoparametric hypercone N =C (M), there exist a PAVR defined
almost everywhere on Rn+1 with vanishing I in N ∼ 0.

The study of PAVR with unit length velocity vector field is closely related to stability
and area-minimality. Among others, in particular, in §4 we recapture

Proposition 1.7. Every minimal isoparametric hypercone with n ≥ 4g − 1 is stable in
Rn+1.

If some preferred structure can exist in certain large domain, area-minimality fol-
lows (see [7]). Based on [2] the area-minimality property of a hypercone automatically
induces

Proposition 1.8. For each area-minimizing (regular) hypercone, there exist a natural
PAVR structure defined almost everywhere with unit length velocity vector field.

2. PROOFS OF THEOREMS 1.2, 1.5

Let us first give a proof for Theorem 1.2. Around any fixed p ∈ N , we choose an ori-
entation, a unit normal vector field V of N and a local orthonormal frame

{
e1, · · · ,en

}
in N . We shall use the foliation F by exponential maps restricted to normals, i.e.,
geodesics determined by V , and variable t given by oriented distance to N . Then a
local orthogonal frame

{
V , e1, · · · ,en

}
can be gained via parallel transport along these

geodesics.

Proof of Theorem 1.2. Assume N divides X into two domains D1 and D2, and there is
an isometry F of X such that F (p) = p, F (N ) = N , F (D1) = D2, F (D2) = D1.
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LetΩ=V ∗∧e∗
1 ∧·· ·∧e∗

n and assume F∗Ω=Ω. Then

F∗[
d(iVΩ)

]
= F∗

{
Σn

i=1e∗
i ∧Ω(∇ei V , · · ·)+V ∗∧Ω (∇V V , · · · )

}
=F∗

{(
Σn

i=1〈∇ei V , ei 〉
)
Ω

}
=F∗

{
−Σn

i=1〈∇ei ei , V 〉
}
Ω

=−F∗(H) ·Ω

(2.2)

where H(y) is the mean curvature function (with respect to V ) of the integral hyper-
surface through y for the distribution V ⊥. Here we restrict ourself to the curve Fp and
require y ∈Fp . It is obvious that F (y) ∈Fp for y close to p.

On the other hand, since the vector field (F∗)−1V equals −V ,

F∗[
d(iVΩ)

]= d
[
F∗(iVΩ)

]= d
(
i(F∗)−1V F∗Ω

)
= Σn

i=1e∗
i ∧Ω(∇ei ((F∗)−1V ), · · ·)+V ∗∧Ω(∇V ((F∗)−1V ), · · ·)

=
{
Σn

i=1〈∇ei ((F∗)−1V ), ei 〉+〈∇V ((F∗)−1V ), V 〉
}
Ω

=H ·Ω.

(2.3)

Thus (2.2) and (2.3) imply H(p) = 0. Similar argument works for the situation F∗Ω =
−Ω as well.

Now we move to a similar proof for Theorem 1.5. A PAVR F along F with velocity
vector field W with respect to variable t means that

(2.4) F ◦F = id,

(2.5) F∗W (p, t ) =−W (p,−t ),

(2.6) F∗Ω=−Ω.

Without loss of generality, we assume that W nowhere vanishes.

Proof of Theorem 1.5. Choose a local orthonormal frame
{
e1, · · · ,en

}
in N and use

parallel transport to extend it along F . Set V = W
‖W ‖ . Then Ω= V ∗∧ e∗

1 ∧·· ·∧ e∗
n . Now

(2.2) is replaced by

F∗[
d(iWΩ)

]
=F∗

{
Σn

i=1e∗
i ∧Ω(∇ei W, · · ·)+V ∗∧Ω (∇V W, · · · )

}
=F∗

{(
Σn

i=1〈∇ei W, ei 〉+〈∇V W, V 〉)Ω}
=F∗

{
Σn

i=1〈∇ei ei , W 〉−〈∇V W, V 〉
}
Ω

(2.7)
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and (2.3) by

F∗[
d(iWΩ)

]= d
[
F∗(iWΩ)

]= d
(
iF∗W F∗Ω

)
= −

{
Σn

i=1e∗
i ∧Ω(∇ei (−W ), · · ·)+V ∗∧Ω (∇V (−W ), · · · )

}
=

{
Σn

i=1〈∇ei W, ei 〉+〈∇V W, V 〉
}
Ω

=
{
−Σn

i=1〈∇ei ei , W 〉+〈∇V W, V 〉
}
Ω

(2.8)

Hence (2.7) and (2.8) imply ‖W ‖ ·H −∇V ‖W ‖ = 0. Thus, in N ,

(2.9) H ≡ 0 ⇐⇒ I =∇W ‖W ‖ = ‖W ‖ ·∇V ‖W ‖ = 0.

Remark 2.1. When ‖W ‖ ≡ 1, W is at least C 0 in N and C 1 elsewhere, the proof also holds
by limiting approach. So we can include such case in PAVR.

3. ABOUT MINIMAL ISOPARAMETRIC HYPERCONES

3.1. Basic Knowledge. An isoparametric foliation on Sn(1) is given by level sets of a
smooth function f : Sn →R with properties:∥∥∇ f

∥∥2 = b( f )

and

∆ f = a( f )

where a, b are smooth functions from f (Sn) to R and ∆ is the Laplacian operator on
Sn . For such structure the preimages M± of maximal and minimal values of f are min-
imal submanifolds of codimensions m1 +1 and m2 +1 respectively; and preimages of
other values are all hypersurfaces with g distinct principal curvatures with alternating
multiplicities m1, m2, m1, · · · . In particular each hypersurface leaf has constant mean
curvature and M± are of distance π

g . Making use of the distance parameter θ from M+
for hypersurface leaves, i.e., Mθ for the leaf of distance θ to M+, we have the volume of
Mθ

(3.10) A(θ) = const ·
(
sin

gθ

2

)m1
(
cos

gθ

2

)m2

and therefore we derive

(3.11) H(θ) =
m1g cot(gθ) for g odd

m1g

2
cot

gθ

2
− m2g

2
tan

gθ

2
for g even

where our mean curvature H has length
∥∥−→H∥∥ and a sign with respect to −∂θ pointing

to M+.
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3.2. Construction of local PAVR. Let M = Mθ0 be the unique isoparametric hypersur-
face of maximal volume. Now we shall search for a one-dimensional homothetic fo-
liation F in some angular neighborhood of C (M) in Rn+1 of which each leaf curve
perpendicularly intersects C (M) ∼ 0 and the flow along F in the angle variable θ is
ΩRn+1 -measure invariant.

For −→x ∈ Sn (excluding focal submanifolds) with unique shortest arc Ùxx0 meeting
M at −→x 0 orthogonally, we shall rescale −→x to its appropriate multiple r (α) ·−→x where α
is the oriented arc length of Ùxx0. Then by homothety one constructs leaves in some
angular neighborhood of ray {l · −→x 0 : l ∈ R+} in span{−→x ,−→x 0}. Do the same procedure
for all points of M .

Let us analyze quantities near −→y = r (α) ·−→x in the leaf F−→x 0
through −→x 0. Apparently,

(1+∆l ) · −→y lies in the leaf F(1+∆l )·−→x 0
. Hence the projection of ∆l · −→y to the n-plane(

T−→y F−→x0

)⊥
orthogonal to F−→x0

has length∣∣∆l
∣∣ · r · 1√

1+ ( dr
r dα )2

.

Let Ft be the map moving points forward along F by angle t . Note that, corresponding
to d

dα ,

(3.12) W = dFα

(
d

dα

∣∣∣−→x 0

)
= d

d t

∣∣∣
t=0

Ft (y)

of length
√

r 2 + ( dr
dα )2. Choose

(3.13) r (α) =
(

A(0)

A(α)

) 1
n+1

,

where A(α) stands for the volume of Mθ0+α. Then it follows, by the property of isopara-
metric foliation,
(3.14)∥∥∥∥dFα

(
e1 ∧·· ·∧en−1 ∧

( d

dα
|−→x 0

)∧−→x 0

)∥∥∥∥= r n−1 A(α)

A(0)
·
√

r 2 +
(

dr

dα

)2

· r√
1+ ( dr

r dα

)2
= 1

where {e1, · · ·en−1} is an orthonormal basis of T−→x 0
(M). In such way we obtain anΩRn+1 -

invariant flow Ft and the associated reflection along F with respect to angle is an PAVR

by (3.13) and
∥∥W

∥∥=
√

r 2 + ( dr
dα )2.

Remark 3.1. Although the measure preserving reflection in angle exists around every
isoparametric hypercone, only the one centered at C (M) ∼ 0 is PAVR.

It is not hard to see that if one uses parameter w = w(α), e.g. w can be mean curva-
ture H(α) of the corresponding isoparametric hypersurface, for anΩ-invariant flow in
variable w , then the corresponding model will be

(3.15) r (α) =
(

K (0)A(0)

K (α)A(α)

) 1
n+1
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where K (α) =
(

d w
dα

)−1
. Since d

d w = K (α) d
dα , one can get some similar relation to (3.14).

Another way to see this is from the following equivalent construction for C∞ divergence-
free homothetic vector fields. For a homothetic vector field

(3.16) W(R,α) = K (α) ·R

r (α)
·
(
r (α)∂α+ dr (α)

dα
∂R

)
in the “polar" coordinate (R,α) where ∂α = 1

R · d
dα of unit length, we have

LW (Ω)

Ω
= div(W )

= K (α) ·div

[
R

r
·
(
r∂α+ dr

dα
∂R

)]
+∂α(K ) ·R

= K (α) ·
{

R

r
·div

[(
r∂α+ dr

dα
∂R

)]
+∂α

(
R

r

)
· r +∂R

(
R

r

)
· dr

dα

}
+∂α(K ) ·R

= K (α) ·
{

R

r
·
[

r ·div(∂α)+∂α(r )+ dr

dα
·div(∂R )

]
− 1

r
· dr

dα
+ 1

r
· dr

dα

}
+ dK

dα

= K (α) ·
{

R

r
·
[

r · H

R
+ dr

dα
· 1

R
+ dr

dα
· n

R

]}
+ dK

dα

= K (α) ·
{

H(α)+ n +1

r (α)
· dr (α)

dα

}
+ dK

dα
.

(3.17)

For LW (Ω) to be zero everywhere, we have

(3.18) r (α) =
(

K (0)

K (α)

) 1
n+1 ·exp

( −1

n +1

∫ α

0
H(s)d s

)
with r (0) = 1. With the aid of (3.10) and (3.11), solution (3.18) is exactly

(3.19) r (α) =
(

K (0)

K (α)
· A(0)

A(α)

) 1
n+1

.

Remark 3.2. Only when d(K ·A)
dα

∣∣
α = 0, the associated reflection is a PAVR for the cone cor-

responding toα. If one takes K (α) = 1
A(α) , then r ≡ 1 and consequently the flow restricted

to Sn isΩSn -measure invariant. In such way a local PAVR of M in Sn is obtained.

It is easy to see that, for the case of odd g , the minimal isoparametric hypersur-
face has θ0 = π

2g and it sits precisely at the middle between focal submanifolds. There-

fore, the PAVR with K (α) = 1
A(α) can be defined almost everywhere on Rn+1, namely on

Rn+1 ∼ (
C (M+)

⋃
C (M−)

)
, and exchanges two chambers divided by C (M).

3.3. For global PAVR. For even g , M may have different distances to focal submani-
folds in general and thus the preceding PAVR cannot extend to almost everywhere. We
shall show how to construct global PAVRs with vanishing I in the minimal isoparamet-
ric cone.

Now shift to variable θ the distance to M+ and apply further modifications. Since

(3.20)
d

dθ
H =−g 2

4

(
m1

s2
+ m2

c2

)
< 0
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where s = sin gθ
2 and c = cos gθ

2 , we can write θ = θ(H) with θ0 = θ(0) = 2
g arctan

√
m1
m2

.

Thus

(3.21) θ̇ = dθ

d H
=− 4

g 2

(
m1

s2
+ m2

c2

)−1

For each value H , set θ1 = θ(H) and θ2 = θ(−H). It follows from (3.11) that for every H

(3.22) tan
gθ1

2
· tan

gθ2

2
= m1

m2
,

and

(3.23) − θ̇2

s2c2
= θ̇1

s1c1
.

So if we define

(3.24) T (H),− θ̇

sin
(
θ(H)

)
cos

(
θ(H)

) = 4

g 2sc

(
m1

s2
+ m2

c2

)−1

〉0,

then (3.23) leads to

(3.25) T (H) = T (−H).

Introduce

(3.26) h(H) =
∫ H

0
−sin

(
θ(S)

)
cos

(
θ(S)

)
dS =

∫ θ(H)

θ0

− sc

θ̇
dθ =

∫ θ(H)

θ0

1

T
dθ.

Then limH→±∞ h(H) =∓∞. Since

(3.27)
d

dh
= (

dh

dθ
)−1 · d

dθ
= T · d

dθ
,

we construct

(3.28) r (θ) =
(

T (θ0)

T (θ)
· A(θ0)

A(θ)

) 1
n+1

,

for a homothetic foliation in which the flow in h is measure invariant. Combined with
the fact that T attains its maximal at H = 0, it follows by Remark (3.2) that choice (3.28)
generates a PAVR (with variable h) defined on Rn+1 ∼ (

C (M+)
⋃

C (M−)
)

with

(3.29) I =∇W ‖W ‖ =∇T · d
dθ

∥∥∥∥T · d

dθ

∥∥∥∥= T
(
∇ d

dθ
T

)∥∥∥∥ d

dθ

∥∥∥∥+T 2∇ d
dθ

∥∥∥∥ d

dθ

∥∥∥∥= 0

in C (M) ∼ 0.

Apparently, such a structure nicely exists on Rn+1 ∼ (
C (M+)

⋃
C (M−)

)
. Therefore we

finish the proof of Theorem 1.6.
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Σ

Σ̃

∆

Γ+

C

VC

E+

x

y G(z)

z

E+ E−

E−

Illustration picture when y ∈ Γ+

4. ABOUT AREA-MINIMIZING HYPERCONES

Given an area-minimizing (regular) hypercone C (M). According to [2], there are
unique smooth minimal hypersurface Γ+ and Γ− in chamber E+ and E− of Rn+1 ∼
C (M) respectively of unit distance to the origin so that their homotheties E foliate
these two chambers. The associated perpendicular distribution forms a dilation-invariant
foliation F of C 1-curves (smooth away from the cone). Assign the curves with the ori-
entation pointing from E− to E+.

Proof of Proposition 1.8. By Fs we mean the moving forward along F by (signed)
length s. Then the unit normal vector field to E is given by

(4.30) V (·) = d
(
Fs(·))
d s

∣∣∣
s=0

Let x ∈ C (M) ∼ 0, y = Fs(x) and Γy be (smooth part of) the leaf through y of E . For
z ∈ Γx , define sx,y (z) to be the (signed) length of the curve segment in Fz connecting z
and Fz

⋂
Γy , such that

(4.31) G(z) = Fsx,y (z)(z) ∈ Γy .

Let γ(t ) ⊂ (
Γx

⋂
support of F

)
be a smooth curve with γ(0) = x and γ′(0) = Z , and

s(t ) = sx,y
(
γ(t )

)
. It is clear that

(4.32) dFs(Z ) = d
{
Fs(t )

(
γ(t )

)}
d t

∣∣∣
t=0

and

(4.33) dFs(Z )−〈dFs(Z ), V (y)〉 ·V (y) = d
{
Fs(t )

(
γ(t )

)}
d t

∣∣∣
t=0

= dG(Z ).

Hence

(4.34) dFs
(
e1 ∧·· ·∧en ∧V (x)

)= dFs (e1 ∧·· ·∧en)∧V (y) = dG (e1 ∧·· ·∧en)∧V (y).

where
{
e1, · · · , en

}
form an orthonormal basis of TxΓx .
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For simplicity, assume x in some domain Σ in C (M) ∼ 0, then applying Stokes’ The-
orem to iVΩ over region ∆

(
between Σ and Σ̃=G(Σ)

)
produces that vol(Σ) = vol(Σ̃). As

Σ shrinks to the point x, it leads to

(4.35)
∥∥dG (e1 ∧·· ·∧en)

∥∥= 1.

Therefore by (4.34) the length flow
{
Fs

}
along F isΩ-invariant. This gives a PAVR with

variable s (smooth away from the hypercone) with velocity vector field of unit length.

Remark 4.1. Let S+ , Sn(1)
⋂
Γ+ and S− , Sn(1)

⋂
Γ−. Then the above PAVR is defined

on Rn+1 ∼ (
C (S+)

⋃
C (S−)

)
.

By the homothety of F , V is translation-invariant in each ray through the origin
in Rn+1. For an area-minimizing isoparametric hypercone, V can be written as V =
cos

(
β(θ)

)
∂θ+ sin

(
β(θ)

)
∂R . TheΩRn+1 -invariance requirement

(4.36) 0 = LVΩ= 1

R
(c ·H − s · c · β̇+n · s)Ω

becomes

(4.37) β̇= H

s
+ n

c
with β(θ0) = 0.

For β̇(θ0) to exist with value λ, it induces from (3.11) that

(4.38) λ= n + −(n −1) · g

λ
,

with real solutions

(4.39) λ± = n ±√
n2 −4g (n −1)

2

only under the necessary condition

(4.40) n2 −4g (n −1) ≥ 0, i.e., n +1 ≥ 4g .

It turns out that requirement condition (4.40) is in fact also sufficient (see page 44 of
[7]). Based on the initial data at θ = θ0, one can build up a divergent free vector field V
of unit length in some angular neighborhood N (around θ = θ0) of C (M). It then fol-
lows that iVΩ is a calibration form due to E ’s being foliation of minimal hypersurfaces
(see [3, 4]). Since V |C (M)∼0 is the unit normal vector field to C (M) ∼ 0, C (M) is area-
minimizing in N by the fundamental theorem of calibrated geometry and therefore
stable minimal. Hence we gain Proposition 1.7.
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